

    
      Navigation

      
        	
          index

        	Diversity.jl stable documentation 
 
      

    


    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/diversityjl/checkouts/stable/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/diversityjl/checkouts/stable/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    


    
         Copyright .
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	Diversity.jl stable documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright .
      Created using Sphinx 1.3.1.
    

  _static/up.png





_static/comment-bright.png





_static/down-pressed.png





_static/minus.png





_static/down.png





_static/plus.png





_static/comment-close.png





_static/comment.png





_static/ajax-loader.gif





ecology.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  In the Diversity.Ecology package, we replicate old ecological
diversity measures and generalised versions of them that relate to our
general measures of alpha, beta and gamma diversity at subcommunity
and ecosystem measures. The generalisations of the richness, Shannon
and Simpson are the only standard measures we are aware of whose
subcommunity components sum directly to the corresponding ecosystem
measure (although note that Simpson’s index decreases for increased
diversity, so small components are more diverse).



Usage


Accessing the functionality in the package is simple:


using Diversity.Ecology

community = [10. 20. 20.]'
diversity = simpson(community)

ecosystem = [2. 2. 0.; 0. 2. 2.]'
Z = eye(3)

jaccard(ecosystem)
generalisedjaccard(ecosystem, [0, 1, 2])
generalisedjaccard(ecosystem, [0, 1, 2], Z)







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

jost.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  Lou Jost’s
diversity [http://dx.doi.org/10.1111/j.2006.0030-1299.14714.x]
measures [http://www.esajournals.org/doi/abs/10.1890/06-1736.1] are
found in the Diversity.Jost package.



Usage


Accessing the main functionality in the package is simple:


using Diversity.Jost

# Load community to study

diversities = jostβ(community, [0, 1, 2])







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/up-pressed.png





_static/file.png





search.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

api/Diversity.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  
Diversity



Functions [Exported]








Diversity.Community ¶





Community type, representing a single community


source:
Diversity/src/Collection.jl:213








Diversity.Ecosystem ¶







Ecosystem type, representing an ecosystem of multiple subcommunities


source:
Diversity/src/Collection.jl:205







Methods [Exported]








DA{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶





Raw similarity-sensitive supercommunity alpha diversity / naive-community diversity


Calculates average raw alpha diversity / naive-community diversity of
a series of subcommunities represented by columns of independent
subcommunity counts, for a series of orders, represented as a vector
of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:165










DA{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Raw similarity-sensitive supercommunity alpha diversity / naive-community diversity


Calculates average raw alpha diversity / naive-community diversity of
a series of subcommunities represented by columns of independent
subcommunity counts, for a series of orders, represented as a vector
of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:165










DB{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Raw similarity-sensitive supercommunity beta diversity / distinctiveness / concentration


Calculates average raw beta diversity / distinctiveness of or
concentration of species in a series of subcommunities represented by
columns of independent subcommunity counts, for a series of orders,
represented as a vector of qs.



Arguments:



		proportions: population proportions


		`qs single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:388










DB{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Raw similarity-sensitive supercommunity beta diversity / distinctiveness / concentration


Calculates average raw beta diversity / distinctiveness of or
concentration of species in a series of subcommunities represented by
columns of independent subcommunity counts, for a series of orders,
represented as a vector of qs.



Arguments:



		proportions: population proportions


		`qs single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:388










DB̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Normalised similarity-sensitive supercommunity beta diversity / effective number of communities


Calculates average normalised beta diversity or the effective number
of distinct subcommunities present in a series of subcommunities
represented by columns of independent subcommunity counts, for a
series of orders, represented as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:445










DB̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Normalised similarity-sensitive supercommunity beta diversity / effective number of communities


Calculates average normalised beta diversity or the effective number
of distinct subcommunities present in a series of subcommunities
represented by columns of independent subcommunity counts, for a
series of orders, represented as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:445










DG{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Raw similarity-sensitive supercommunity gamma diversity


Calculates diversity of a series of columns representing independent
subcommunity counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:539










DG{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Raw similarity-sensitive supercommunity gamma diversity


Calculates diversity of a series of columns representing independent
subcommunity counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:539










DR{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Raw similarity-sensitive supercommunity redundancy


Calculates average redundancy of a series of subcommunities
represented by columns of independent subcommunity counts, for a
series of orders, represented as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of redundancies representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:362










DR{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Raw similarity-sensitive supercommunity redundancy


Calculates average redundancy of a series of subcommunities
represented by columns of independent subcommunity counts, for a
series of orders, represented as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of redundancies representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:362










DR̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Normalised similarity-sensitive supercommunity representativeness


Calculates average representativeness of a series of subcommunities
represented by columns of independent subcommunity counts, for a
series of orders, represented as a vector of qs. Representativeness
reflects what proportion of the supercommunity each subcommunity is
representative of on average, so if each subcommunity contains 1/xth
of the species, then the average representativeness of the
subcommunities is 1/x.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of representativenesses representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:418










DR̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Normalised similarity-sensitive supercommunity representativeness


Calculates average representativeness of a series of subcommunities
represented by columns of independent subcommunity counts, for a
series of orders, represented as a vector of qs. Representativeness
reflects what proportion of the supercommunity each subcommunity is
representative of on average, so if each subcommunity contains 1/xth
of the species, then the average representativeness of the
subcommunities is 1/x.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of representativenesses representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:418










DĀ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Normalised similarity-sensitive supercommunity alpha diversity


Calculates average (normalised alpha) diversity of a series of
subcommunities represented by columns of independent subcommunity
counts, for a series of orders, represented as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:191










DĀ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Normalised similarity-sensitive supercommunity alpha diversity


Calculates average (normalised alpha) diversity of a series of
subcommunities represented by columns of independent subcommunity
counts, for a series of orders, represented as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:191










Dα{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Raw similarity-sensitive subcommunity alpha diversity / naive-community diversity


Calculates average raw alpha diversity / naive-community diversity of
a series of subcommunities represented by columns of independent
subcommunity counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:101










Dα{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Raw similarity-sensitive subcommunity alpha diversity / naive-community diversity


Calculates average raw alpha diversity / naive-community diversity of
a series of subcommunities represented by columns of independent
subcommunity counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:101










Dβ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Raw similarity-sensitive subcommunity beta diversity / distinctiveness / concentration


Calculates the raw beta diversity / distinctiveness of or
concentration of species in a series of subcommunities represented by
columns of independent subcommunity counts, for a series of orders,
represented as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:252










Dβ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Raw similarity-sensitive subcommunity beta diversity / distinctiveness / concentration


Calculates the raw beta diversity / distinctiveness of or
concentration of species in a series of subcommunities represented by
columns of independent subcommunity counts, for a series of orders,
represented as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:252










Dβ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Normalised similarity-sensitive subcommunity beta diversity


Calculates normalised beta diversities or the effective number of
distinct subcommunities perceived by a series of subcommunities
represented by columns of independent subcommunity counts, represented
as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:327










Dβ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Normalised similarity-sensitive subcommunity beta diversity


Calculates normalised beta diversities or the effective number of
distinct subcommunities perceived by a series of subcommunities
represented by columns of independent subcommunity counts, represented
as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:327










Dγ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Raw similarity-sensitive subcommunity gamma diversity


Calculates diversity of a series of columns representing independent
subcommunity counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:472










Dγ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Raw similarity-sensitive subcommunity gamma diversity


Calculates diversity of a series of columns representing independent
subcommunity counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:472










Dγ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Normalised similarity-sensitive subcommunity gamma diversity


Calculates diversity of a series of columns representing independent
subcommunity counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:506










Dγ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Normalised similarity-sensitive subcommunity gamma diversity


Calculates diversity of a series of columns representing independent
subcommunity counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:506










Dρ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Raw similarity-sensitive subcommunity redundancy


Calculates redundancy of a series of subcommunities represented by
columns of independent subcommunity counts, for a series of orders,
represented as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of redundancies, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:218










Dρ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Raw similarity-sensitive subcommunity redundancy


Calculates redundancy of a series of subcommunities represented by
columns of independent subcommunity counts, for a series of orders,
represented as a vector of qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of redundancies, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:218










Dρ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Normalised similarity-sensitive subcommunity representativeness


Calculates the representativeness of a series of subcommunities
represented by columns of independent subcommunity counts, for a
series of orders, represented as a vector of qs. Representativeness
reflects what proportion of the supercommunity each subcommunity is
representative of on average, so if each subcommunity contains 1/xth
of the species, then the average representativeness of the
subcommunities is 1/x.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of representativenesses, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:290










Dρ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Normalised similarity-sensitive subcommunity representativeness


Calculates the representativeness of a series of subcommunities
represented by columns of independent subcommunity counts, for a
series of orders, represented as a vector of qs. Representativeness
reflects what proportion of the supercommunity each subcommunity is
representative of on average, so if each subcommunity contains 1/xth
of the species, then the average representativeness of the
subcommunities is 1/x.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of representativenesses, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:290










DḠ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Normalised similarity-sensitive supercommunity gamma diversity


Calculates diversity of a series of columns representing independent
subcommunity counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:565










DḠ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Normalised similarity-sensitive supercommunity gamma diversity


Calculates diversity of a series of columns representing independent
subcommunity counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		vector of diversities representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:565










Dᾱ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Normalised similarity-sensitive subcommunity alpha diversity)


Calculates (normalised alpha) diversity of a series of
subcommunities represented by columns of independent subcommunity
counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:133










Dᾱ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Normalised similarity-sensitive subcommunity alpha diversity)


Calculates (normalised alpha) diversity of a series of
subcommunities represented by columns of independent subcommunity
counts, for a series of orders, represented as a vector of
qs.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		array of diversities, first dimension representing subcommunities, and
last representing values of q





source:
Diversity/src/GeneralisedDiversities.jl:133










diversity{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Calculates subcommunity and supercommunity diversities


Calculates any diversity of a series of columns representing
independent subcommunity counts, for a series of orders, repesented as
a vector of qs, with similarity matrix Z, by default the (naïve)
identity matrix.



Arguments:



		measure: the diversity function to be used - one of Dα, Dᾱ, Dρ, Dϵ
(or Dρ̄), Dγ or Dγ̄


		proportions:population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:


Some or all (as tuple) of:



		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		multidimensional array with dimensions matiching shape of proportions,
with extra dimension for values of q





source:
Diversity/src/GeneralisedDiversities.jl:38










diversity{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Calculates subcommunity and supercommunity diversities


Calculates any diversity of a series of columns representing
independent subcommunity counts, for a series of orders, repesented as
a vector of qs, with similarity matrix Z, by default the (naïve)
identity matrix.



Arguments:



		measure: the diversity function to be used - one of Dα, Dᾱ, Dρ, Dϵ
(or Dρ̄), Dγ or Dγ̄


		proportions:population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:


Some or all (as tuple) of:



		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		multidimensional array with dimensions matiching shape of proportions,
with extra dimension for values of q





source:
Diversity/src/GeneralisedDiversities.jl:38










diversity{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool) ¶







Calculates subcommunity and supercommunity diversities


Calculates any diversity of a series of columns representing
independent subcommunity counts, for a series of orders, repesented as
a vector of qs, with similarity matrix Z, by default the (naïve)
identity matrix.



Arguments:



		measure: the diversity function to be used - one of Dα, Dᾱ, Dρ, Dϵ
(or Dρ̄), Dγ or Dγ̄


		proportions:population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:


Some or all (as tuple) of:



		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		multidimensional array with dimensions matiching shape of proportions,
with extra dimension for values of q





source:
Diversity/src/GeneralisedDiversities.jl:38










diversity{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool,  returnsubcommunity::Bool) ¶







Calculates subcommunity and supercommunity diversities


Calculates any diversity of a series of columns representing
independent subcommunity counts, for a series of orders, repesented as
a vector of qs, with similarity matrix Z, by default the (naïve)
identity matrix.



Arguments:



		measure: the diversity function to be used - one of Dα, Dᾱ, Dρ, Dϵ
(or Dρ̄), Dγ or Dγ̄


		proportions:population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:


Some or all (as tuple) of:



		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		multidimensional array with dimensions matiching shape of proportions,
with extra dimension for values of q





source:
Diversity/src/GeneralisedDiversities.jl:38










diversity{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool,  returnsubcommunity::Bool,  returnweights::Bool) ¶







Calculates subcommunity and supercommunity diversities


Calculates any diversity of a series of columns representing
independent subcommunity counts, for a series of orders, repesented as
a vector of qs, with similarity matrix Z, by default the (naïve)
identity matrix.



Arguments:



		measure: the diversity function to be used - one of Dα, Dᾱ, Dρ, Dϵ
(or Dρ̄), Dγ or Dγ̄


		proportions:population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:


Some or all (as tuple) of:



		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		multidimensional array with dimensions matiching shape of proportions,
with extra dimension for values of q





source:
Diversity/src/GeneralisedDiversities.jl:38










qDZ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 1},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Calculates Leinster-Cobbold / similarity-sensitive diversity


Calculates Leinster-Cobbold general diversity of >= 1 order(s) qs of
a population with given relative proportions, and similarity matrix
Z.



Arguments:



		proportions: relative proportions of different individuals /
species in a population or series of populations


		qs: single number or vector of orders of diversity measurement


		Z: similarity matrix








Returns:



		Diversity of order qs (single number or vector of diversities)





source:
Diversity/src/EffectiveNumbers.jl:102










qDZ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 1},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2}) ¶







Calculates Leinster-Cobbold / similarity-sensitive diversity


Calculates Leinster-Cobbold general diversity of >= 1 order(s) qs of
a population with given relative proportions, and similarity matrix
Z.



Arguments:



		proportions: relative proportions of different individuals /
species in a population or series of populations


		qs: single number or vector of orders of diversity measurement


		Z: similarity matrix








Returns:



		Diversity of order qs (single number or vector of diversities)





source:
Diversity/src/EffectiveNumbers.jl:102










qD{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 1},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Calculates Hill / naive-similarity diversity


Calculates Hill number or naive diversity of order(s) qs of a
population with given relative proportions.



Arguments:



		proportions: relative proportions of different individuals /
species in population or series of populations


		qs: single number or vector of orders of diversity measurement








Returns:



		Diversity of order qs (single number or vector of diversities)





source:
Diversity/src/EffectiveNumbers.jl:72









Types [Exported]








Diversity.Collection{S<:Diversity.Similarity, P<:Diversity.Partition, FP<:AbstractFloat} ¶





Collection type, representing a collection of one or more subcommunities


Type representing a single community or collection of communities. It
contains a collection of individuals which may be further
partitioned into smaller groups. For instance this may be an
ecosystem, which consists of a series of subcommunities.


The type stores relative abundances of different types, e.g. species,
and also allows for similarity between individuals.



Parameterisation:


Collection{S, P, FP}



		S is the similarity type, e.g. Species, a subtype of Similarity.


		P is the partition type, e.g. Subcommunity, a subtype of Partition.


		FP is the kind of number storage, a subtype of AbstractFloat.








Members:



		abundances An array of relative abundances. The first dimension
represents the species, and further dimensions
represent the structure of collection.


		Z A two-dimensional matrix representing similarity between
individuals of the base type, S. By default this will be the
identity matrix.





source:
Diversity/src/Collection.jl:154










Diversity.GeneralSimilarity ¶







A general matrix-based Similarity subtype


This subtype of Similarity simply holds a matrix with similarities
between individuals.



Members:



		matrix A two-dimensional matrix representing similarity between
individuals. By default this will be the identity matrix,
but will require the number of species to be instantiated.





source:
Diversity/src/Collection.jl:60










Diversity.Onecommunity ¶







Partition type allowing only one subcommunity


source:
Diversity/src/Collection.jl:115








Diversity.Subcommunity ¶







Partition type with multiple subccomunities


source:
Diversity/src/Collection.jl:110








Diversity.Unique ¶







A subtype of Similarity where all individuals are completely distinct


This type is the simplest Similarity subtype, which identifies all
individuals as unique and completely distinct from each other.


source:
Diversity/src/Collection.jl:16







Typealiass [Exported]








Species ¶





A subtype of Similarity where all species are completely distinct


This type is the simplest Similarity subtype, which identifies all
species as unique and completely distinct from each other.


source:
Diversity/src/Collection.jl:25







Methods [Internal]








call(::Type{Diversity.GeneralSimilarity},  Z::Array{Float64, 2}) ¶





Constructor for GeneralSimilarity


Creates an instance of the GeneralSimilarity class, with an arbitrary similarity matrix.



Arguments:



		Z: similarity matrix





source:
Diversity/src/Collection.jl:74










contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Calculate diversity contributions from subcommunities


Calculates proportions that subcommunities each contribute to
supercommunity diversity per subcommunity (perindividual = false), or
per individual (perindividual = true) - in the latter case scaled
so that the total # of individuals is 1, since we only have
relative abundances.



Arguments:



		measure: diversity measure to use


		proportions: population proportions


		qs: single number or vector of values of parameter q


		perindividual: do we measure per individual in population (true)
or per subcommunity (false)


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:



		contributions of subcommunities to supercommunity diversity (of type measure)


		and none, some or all (in a tuple) of:
		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		vector of subcommunity weights











source:
Diversity/src/CommunityContributions.jl:31










contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  perindividual::Bool) ¶







Calculate diversity contributions from subcommunities


Calculates proportions that subcommunities each contribute to
supercommunity diversity per subcommunity (perindividual = false), or
per individual (perindividual = true) - in the latter case scaled
so that the total # of individuals is 1, since we only have
relative abundances.



Arguments:



		measure: diversity measure to use


		proportions: population proportions


		qs: single number or vector of values of parameter q


		perindividual: do we measure per individual in population (true)
or per subcommunity (false)


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:



		contributions of subcommunities to supercommunity diversity (of type measure)


		and none, some or all (in a tuple) of:
		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		vector of subcommunity weights











source:
Diversity/src/CommunityContributions.jl:31










contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  perindividual::Bool,  Z::Array{S<:AbstractFloat, 2}) ¶







Calculate diversity contributions from subcommunities


Calculates proportions that subcommunities each contribute to
supercommunity diversity per subcommunity (perindividual = false), or
per individual (perindividual = true) - in the latter case scaled
so that the total # of individuals is 1, since we only have
relative abundances.



Arguments:



		measure: diversity measure to use


		proportions: population proportions


		qs: single number or vector of values of parameter q


		perindividual: do we measure per individual in population (true)
or per subcommunity (false)


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:



		contributions of subcommunities to supercommunity diversity (of type measure)


		and none, some or all (in a tuple) of:
		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		vector of subcommunity weights











source:
Diversity/src/CommunityContributions.jl:31










contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  perindividual::Bool,  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool) ¶







Calculate diversity contributions from subcommunities


Calculates proportions that subcommunities each contribute to
supercommunity diversity per subcommunity (perindividual = false), or
per individual (perindividual = true) - in the latter case scaled
so that the total # of individuals is 1, since we only have
relative abundances.



Arguments:



		measure: diversity measure to use


		proportions: population proportions


		qs: single number or vector of values of parameter q


		perindividual: do we measure per individual in population (true)
or per subcommunity (false)


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:



		contributions of subcommunities to supercommunity diversity (of type measure)


		and none, some or all (in a tuple) of:
		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		vector of subcommunity weights











source:
Diversity/src/CommunityContributions.jl:31










contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  perindividual::Bool,  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool,  returnsubcommunity::Bool) ¶







Calculate diversity contributions from subcommunities


Calculates proportions that subcommunities each contribute to
supercommunity diversity per subcommunity (perindividual = false), or
per individual (perindividual = true) - in the latter case scaled
so that the total # of individuals is 1, since we only have
relative abundances.



Arguments:



		measure: diversity measure to use


		proportions: population proportions


		qs: single number or vector of values of parameter q


		perindividual: do we measure per individual in population (true)
or per subcommunity (false)


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:



		contributions of subcommunities to supercommunity diversity (of type measure)


		and none, some or all (in a tuple) of:
		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		vector of subcommunity weights











source:
Diversity/src/CommunityContributions.jl:31










contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  perindividual::Bool,  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool,  returnsubcommunity::Bool,  returnweights::Bool) ¶







Calculate diversity contributions from subcommunities


Calculates proportions that subcommunities each contribute to
supercommunity diversity per subcommunity (perindividual = false), or
per individual (perindividual = true) - in the latter case scaled
so that the total # of individuals is 1, since we only have
relative abundances.



Arguments:



		measure: diversity measure to use


		proportions: population proportions


		qs: single number or vector of values of parameter q


		perindividual: do we measure per individual in population (true)
or per subcommunity (false)


		Z: similarity matrix


		returnsupercommunity: boolean describing whether to return the
supercommunity diversity


		returnsubcommunity: boolean describing whether to return the
subcommunity diversities


		returnweights: boolean describing whether to return subcommunity weights








Returns:



		contributions of subcommunities to supercommunity diversity (of type measure)


		and none, some or all (in a tuple) of:
		vector of supercommunity diversities representing values of q


		array of diversities, first dimension representing subcommunities, and
last representing values of q


		vector of subcommunity weights











source:
Diversity/src/CommunityContributions.jl:31










powermean{S<:Number, T<:AbstractFloat, U<:Number}(values::Array{S<:Number, 1},  order::T<:AbstractFloat,  weights::Array{U<:Number, 1}) ¶







Calculates the weighted powermean of a series of numbers


Calculates orderth power mean of values, weighted by
weights. By default, weights are equal and order
is 1, so this is just the arithmetic mean.



Arguments:



		values: values for which to calculate mean


		order: order of power mean


		weights: weights of elements, normalised to 1 inside function








Returns:



		weighted power mean(s)





source:
Diversity/src/EffectiveNumbers.jl:16










powermean{S<:Number, T<:AbstractFloat}(values::Array{S<:Number, 1},  order::T<:AbstractFloat) ¶







Calculates the weighted powermean of a series of numbers


Calculates orderth power mean of values, weighted by
weights. By default, weights are equal and order
is 1, so this is just the arithmetic mean.



Arguments:



		values: values for which to calculate mean


		order: order of power mean


		weights: weights of elements, normalised to 1 inside function








Returns:



		weighted power mean(s)





source:
Diversity/src/EffectiveNumbers.jl:16










powermean{S<:Number}(values::Array{S<:Number, 1}) ¶







Calculates the weighted powermean of a series of numbers


Calculates orderth power mean of values, weighted by
weights. By default, weights are equal and order
is 1, so this is just the arithmetic mean.



Arguments:



		values: values for which to calculate mean


		order: order of power mean


		weights: weights of elements, normalised to 1 inside function








Returns:



		weighted power mean(s)





source:
Diversity/src/EffectiveNumbers.jl:16









Types [Internal]








Diversity.Partition ¶





Abstract Partition supertype for all partitioning types


This type is the abstract superclass of all partitioning types.
Partition subtypes allow you to define how to partition your total
collection (e.g. an ecosystem) into smaller components (e.g.
subcommunities).


source:
Diversity/src/Collection.jl:105








Diversity.Similarity ¶







Abstract Similarity supertype for all similarity measures


This type is the abstract superclass of all similarity types. Its
subtypes allow you to define how similarity is measured between
individuals.


source:
Diversity/src/Collection.jl:8










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

hill.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  Hill numbers [http://www.jstor.org/stable/1934352] are found in the
Diversity.Hill package.



Usage


Accessing the main functionality in the package is simple:


using Diversity.Hill

# Load community to study

diversities = hillnumber(community, [0, 1, 2])







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

api/README.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  Files in this directory are generated using an automated script. Make
all changes to the originating docstrings/files rather than these ones.


Documentation should only be built directly on the master branch.
Source links would otherwise become unavailable should a branch be
deleted from the origin. This means potential pull request authors
should not run the build script when filing a PR.




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

diversity.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  The Diversity package provides functionality for measuring alpha,
beta and gamma diversity of subcommunities and ecosystems. It uses
diversity measures extended from those described in the arXiv paper
arXiv:1404.6520 (q-bio.QM) [http://arxiv.org/abs/1404.6520],
How to partition diversity. The alpha, beta and gamma diversities in
the paper are supplemented by beta diversity measures related to
redundancy, DR and representativeness, DR̄, of ecosystems, and their associated
subcommunities (Dρ and Dρ̄, respectively).



Usage


Accessing the functionality in the package is simple:


using Diversity

# Load up ecosystem

diversities = Dᾱ(ecosystem, [0, 1, 2, Inf], Z)
diversities = Dγ(ecosystem, [0, 1, 2, Inf], Z)







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

api/index.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  
API-INDEX



MODULE: Diversity







Functions [Exported]


Diversity.Community  ### Community type, representing a single community


Diversity.Ecosystem  ### Ecosystem type, representing an ecosystem of multiple subcommunities







Methods [Exported]


DA{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Raw similarity-sensitive supercommunity alpha diversity / naive-community diversity


DA{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Raw similarity-sensitive supercommunity alpha diversity / naive-community diversity


DB{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Raw similarity-sensitive supercommunity beta diversity / distinctiveness / concentration


DB{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Raw similarity-sensitive supercommunity beta diversity / distinctiveness / concentration


DB̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Normalised similarity-sensitive supercommunity beta diversity / effective number of communities


DB̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Normalised similarity-sensitive supercommunity beta diversity / effective number of communities


DG{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Raw similarity-sensitive supercommunity gamma diversity


DG{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Raw similarity-sensitive supercommunity gamma diversity


DR{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Raw similarity-sensitive supercommunity redundancy


DR{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Raw similarity-sensitive supercommunity redundancy


DR̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Normalised similarity-sensitive supercommunity representativeness


DR̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Normalised similarity-sensitive supercommunity representativeness


DĀ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Normalised similarity-sensitive supercommunity alpha diversity


DĀ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Normalised similarity-sensitive supercommunity alpha diversity


Dα{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Raw similarity-sensitive subcommunity alpha diversity / naive-community diversity


Dα{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Raw similarity-sensitive subcommunity alpha diversity / naive-community diversity


Dβ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Raw similarity-sensitive subcommunity beta diversity / distinctiveness / concentration


Dβ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Raw similarity-sensitive subcommunity beta diversity / distinctiveness / concentration


Dβ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Normalised similarity-sensitive subcommunity beta diversity


Dβ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Normalised similarity-sensitive subcommunity beta diversity


Dγ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Raw similarity-sensitive subcommunity gamma diversity


Dγ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Raw similarity-sensitive subcommunity gamma diversity


Dγ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Normalised similarity-sensitive subcommunity gamma diversity


Dγ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Normalised similarity-sensitive subcommunity gamma diversity


Dρ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Raw similarity-sensitive subcommunity redundancy


Dρ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Raw similarity-sensitive subcommunity redundancy


Dρ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Normalised similarity-sensitive subcommunity representativeness


Dρ̄{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Normalised similarity-sensitive subcommunity representativeness


DḠ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Normalised similarity-sensitive supercommunity gamma diversity


DḠ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Normalised similarity-sensitive supercommunity gamma diversity


Dᾱ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Normalised similarity-sensitive subcommunity alpha diversity)


Dᾱ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Normalised similarity-sensitive subcommunity alpha diversity)


diversity{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Calculates subcommunity and supercommunity diversities


diversity{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Calculates subcommunity and supercommunity diversities


diversity{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool)  ### Calculates subcommunity and supercommunity diversities


diversity{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool,  returnsubcommunity::Bool)  ### Calculates subcommunity and supercommunity diversities


diversity{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool,  returnsubcommunity::Bool,  returnweights::Bool)  ### Calculates subcommunity and supercommunity diversities


qDZ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 1},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Calculates Leinster-Cobbold / similarity-sensitive diversity


qDZ{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 1},  qs::Union{Array{T<:Number, 1}, T<:Number},  Z::Array{S<:AbstractFloat, 2})  ### Calculates Leinster-Cobbold / similarity-sensitive diversity


qD{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 1},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Calculates Hill / naive-similarity diversity







Types [Exported]


Diversity.Collection{S<:Diversity.Similarity, P<:Diversity.Partition, FP<:AbstractFloat}  ### Collection type, representing a collection of one or more subcommunities


Diversity.GeneralSimilarity  ### A general matrix-based Similarity subtype


Diversity.Onecommunity  ### Partition type allowing only one subcommunity


Diversity.Subcommunity  ### Partition type with multiple subccomunities


Diversity.Unique  ### A subtype of Similarity where all individuals are completely distinct







Typealiass [Exported]


Species  ### A subtype of Similarity where all species are completely distinct







Methods [Internal]


call(::Type{Diversity.GeneralSimilarity},  Z::Array{Float64, 2})  ### Constructor for GeneralSimilarity


contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Calculate diversity contributions from subcommunities


contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  perindividual::Bool)  ### Calculate diversity contributions from subcommunities


contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  perindividual::Bool,  Z::Array{S<:AbstractFloat, 2})  ### Calculate diversity contributions from subcommunities


contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  perindividual::Bool,  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool)  ### Calculate diversity contributions from subcommunities


contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  perindividual::Bool,  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool,  returnsubcommunity::Bool)  ### Calculate diversity contributions from subcommunities


contributions{S<:AbstractFloat, T<:Number}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number},  perindividual::Bool,  Z::Array{S<:AbstractFloat, 2},  returnsupercommunity::Bool,  returnsubcommunity::Bool,  returnweights::Bool)  ### Calculate diversity contributions from subcommunities


powermean{S<:Number, T<:AbstractFloat, U<:Number}(values::Array{S<:Number, 1},  order::T<:AbstractFloat,  weights::Array{U<:Number, 1})  ### Calculates the weighted powermean of a series of numbers


powermean{S<:Number, T<:AbstractFloat}(values::Array{S<:Number, 1},  order::T<:AbstractFloat)  ### Calculates the weighted powermean of a series of numbers


powermean{S<:Number}(values::Array{S<:Number, 1})  ### Calculates the weighted powermean of a series of numbers







Types [Internal]


Diversity.Partition  ### Abstract Partition supertype for all partitioning types


Diversity.Similarity  ### Abstract Similarity supertype for all similarity measures





MODULE: Diversity.Hill







Methods [Exported]


hillnumber(proportions,  qs)  ### Calculates Hill numbers





MODULE: Diversity.Ecology







Methods [Exported]


generalisedjaccard(proportions::Array{T, 2},  qs)  ### Calculate a generalised version of the Jaccard index


generalisedjaccard(proportions::Array{T, 2},  qs,  Z::Array{T, 2})  ### Calculate a generalised version of the Jaccard index


generalisedrichness{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2})  ### Calculate a generalised version of richness


generalisedrichness{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  Z::Array{S<:AbstractFloat, 2})  ### Calculate a generalised version of richness


generalisedshannon{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2})  ### Calculate a generalised version of Shannon entropy


generalisedshannon{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  Z::Array{S<:AbstractFloat, 2})  ### Calculate a generalised version of Shannon entropy


generalisedsimpson{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2})  ### Calculate a generalised version of Simpson’s index


generalisedsimpson{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  Z::Array{S<:AbstractFloat, 2})  ### Calculate a generalised version of Simpson’s index


jaccard{S<:AbstractFloat}(proportions::Array{S<:AbstractFloat, 2})  ### Calculate the Jaccard index


richness{S<:AbstractFloat}(proportions::Array{S<:AbstractFloat, 2})  ### Calculate species richness of populations


shannon{S<:AbstractFloat}(proportions::Array{S<:AbstractFloat, 2})  ### Calculate Shannon entropy of populations


simpson{S<:AbstractFloat}(proportions::Array{S<:AbstractFloat, 2})  ### Calculate Simpson’s index





MODULE: Diversity.Jost







Methods [Exported]


jostalpha{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Calculates Jost’s alpha diversity


jostbeta{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number})  ### Calculates Jost’s beta diversity








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

api/Diversity.Jost.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  
Diversity.Jost



Methods [Exported]








jostalpha{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶





Calculates Jost’s alpha diversity


Calculates Jost’s alpha diversity of a series of columns representing
independent community counts, for a series of orders, repesented as a
vector of qs. This is just the naive-community ecosystem diversity
divided by the naive-community beta diversity.





Arguments:



		proportions relative proportions of different individuals / species
in population (vector, or matrix where columns are
for individual sub-communities)


		qs single number or vector of orders of diversity measurement








Returns:



		array of diversities, first dimension representing sub-communities, and
last representing values of q





source:
Diversity/src/Jost.jl:22








jostbeta{S<:AbstractFloat, T<:Number}(proportions::Array{S<:AbstractFloat, 2},  qs::Union{Array{T<:Number, 1}, T<:Number}) ¶







Calculates Jost’s beta diversity


Calculates Jost’s beta diversity of a series of columns representing
independent community counts, for a series of orders, repesented as a
vector of qs. This is just the naive gamma diversity divided by
Jost’s alpha diversity





Arguments:



		proportions relative proportions of different individuals / species
in population (vector, or matrix where columns are
for individual sub-communities)


		qs single number or vector of orders of diversity measurement








Returns:



		array of diversities, first dimension representing sub-communities, and
last representing values of q





source:
Diversity/src/Jost.jl:49










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

api/Diversity.Ecology.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  
Diversity.Ecology



Methods [Exported]








generalisedjaccard(proportions::Array{T, 2},  qs) ¶





Calculate a generalised version of the Jaccard index


Calculates a generalisation of the Jaccard index of a series of
columns representing subcommunity counts. This evaluates to is DG / DA
for a series of orders, repesented as a vector of qs (or a single
number).  It also includes a similarity matrix for the species. This
gives measure of the average distinctiveness of the subcommunities.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		Jaccard-related distinctivess measures





source:
Diversity/src/Ecology.jl:143










generalisedjaccard(proportions::Array{T, 2},  qs,  Z::Array{T, 2}) ¶







Calculate a generalised version of the Jaccard index


Calculates a generalisation of the Jaccard index of a series of
columns representing subcommunity counts. This evaluates to is DG / DA
for a series of orders, repesented as a vector of qs (or a single
number).  It also includes a similarity matrix for the species. This
gives measure of the average distinctiveness of the subcommunities.



Arguments:



		proportions: population proportions


		qs: single number or vector of values of parameter q


		Z: similarity matrix








Returns:



		Jaccard-related distinctivess measures





source:
Diversity/src/Ecology.jl:143










generalisedrichness{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2}) ¶







Calculate a generalised version of richness


Calculates (species) richness of a series of columns representing
independent subcommunity counts, which is diversity at q = 0 for any
diversity measure (passed as the second argument). It also includes a
similarity matrix for the species



Arguments:



		measure: diversity measure to use (one of Dα, Dᾱ, Dρ, Dρ̄, Dγ or Dγ̄)


		proportions: population proportions


		Z: similarity matrix










Returns:



		diversity (at ecosystem level) or diversities (of subcommunities)





source:
Diversity/src/Ecology.jl:21








generalisedrichness{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  Z::Array{S<:AbstractFloat, 2}) ¶







Calculate a generalised version of richness


Calculates (species) richness of a series of columns representing
independent subcommunity counts, which is diversity at q = 0 for any
diversity measure (passed as the second argument). It also includes a
similarity matrix for the species



Arguments:



		measure: diversity measure to use (one of Dα, Dᾱ, Dρ, Dρ̄, Dγ or Dγ̄)


		proportions: population proportions


		Z: similarity matrix










Returns:



		diversity (at ecosystem level) or diversities (of subcommunities)





source:
Diversity/src/Ecology.jl:21








generalisedshannon{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2}) ¶







Calculate a generalised version of Shannon entropy


Calculates Shannon entropy of a series of columns representing
independent subcommunity counts, which is log(diversity) at q = 1 for
any diversity measure (passed as the second argument). It also
includes a similarity matrix for the species



Arguments:



		measure: diversity measure to use (one of Dα, Dᾱ, Dρ, Dρ̄, Dγ or Dγ̄)


		proportions: population proportions


		Z: similarity matrix








Returns:



		entropy (at ecosystem level) or entropies (of subcommunities)





source:
Diversity/src/Ecology.jl:62










generalisedshannon{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  Z::Array{S<:AbstractFloat, 2}) ¶







Calculate a generalised version of Shannon entropy


Calculates Shannon entropy of a series of columns representing
independent subcommunity counts, which is log(diversity) at q = 1 for
any diversity measure (passed as the second argument). It also
includes a similarity matrix for the species



Arguments:



		measure: diversity measure to use (one of Dα, Dᾱ, Dρ, Dρ̄, Dγ or Dγ̄)


		proportions: population proportions


		Z: similarity matrix








Returns:



		entropy (at ecosystem level) or entropies (of subcommunities)





source:
Diversity/src/Ecology.jl:62










generalisedsimpson{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2}) ¶







Calculate a generalised version of Simpson’s index


Calculates Simpson’s index of a series of columns representing
independent subcommunity counts, which is 1 / diversity at q = 2 for
any diversity measure (passed as the second argument). It also
includes a similarity matrix for the species



Arguments:



		measure: diversity measure to use (one of Dα, Dᾱ, Dρ, Dρ̄, Dγ or Dγ̄)


		proportions: population proportions


		Z: similarity matrix








Returns:



		concentration (at ecosystem level) or concentrations (of subcommunities)





source:
Diversity/src/Ecology.jl:102










generalisedsimpson{S<:AbstractFloat}(measure::Function,  proportions::Array{S<:AbstractFloat, 2},  Z::Array{S<:AbstractFloat, 2}) ¶







Calculate a generalised version of Simpson’s index


Calculates Simpson’s index of a series of columns representing
independent subcommunity counts, which is 1 / diversity at q = 2 for
any diversity measure (passed as the second argument). It also
includes a similarity matrix for the species



Arguments:



		measure: diversity measure to use (one of Dα, Dᾱ, Dρ, Dρ̄, Dγ or Dγ̄)


		proportions: population proportions


		Z: similarity matrix








Returns:



		concentration (at ecosystem level) or concentrations (of subcommunities)





source:
Diversity/src/Ecology.jl:102










jaccard{S<:AbstractFloat}(proportions::Array{S<:AbstractFloat, 2}) ¶







Calculate the Jaccard index


Calculates Jaccard index (Jaccard similarity coefficient) of two
columns representing independent subcommunity counts, which is
DA(proportions, 0) / DG(proportions, 0) - 1



Arguments:



		proportions: population proportions








Returns:



		the Jaccard index





source:
Diversity/src/Ecology.jl:163










richness{S<:AbstractFloat}(proportions::Array{S<:AbstractFloat, 2}) ¶







Calculate species richness of populations


Calculates (species) richness of a series of columns representing
independent subcommunity counts, which is diversity at q = 0



Arguments:



		proportions: population proportions








Returns:



		diversities of subcommunities





source:
Diversity/src/Ecology.jl:40










shannon{S<:AbstractFloat}(proportions::Array{S<:AbstractFloat, 2}) ¶







Calculate Shannon entropy of populations


Calculates shannon entropy of a series of columns representing
independent subcommunity counts, which is log(diversity) at q = 1



Arguments:



		proportions: population proportions








Returns:



		entropies of subcommunities





source:
Diversity/src/Ecology.jl:81










simpson{S<:AbstractFloat}(proportions::Array{S<:AbstractFloat, 2}) ¶







Calculate Simpson’s index


Calculates Simpson’s index of a series of columns representing
independent subcommunity counts, which is 1 / diversity (or
concentration) at q = 2



Arguments:



		proportions: population proportions








Returns:



		concentrations of subcommunities





source:
Diversity/src/Ecology.jl:122












          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

api/Diversity.Hill.html


    
      Navigation


      
        		
          index


        		Diversity.jl stable documentation »

 
      


    


    
      
          
            
  
Diversity.Hill



Methods [Exported]








hillnumber(proportions,  qs) ¶





Calculates Hill numbers


Calculate the Hill number (or naive diversity) of order q of
population(s) with given relative proportions





Arguments:



		proportions: relative proportions of different individuals / species
in population (vector, or matrix where columns are
individual populations)


		qs: single number or vector of orders of diversity measurement








Returns:



		Diversity of order qs (single number or vector of diversities)





source:
Diversity/src/Hill.jl:18










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

